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The turbulent flow of a weakly conducting liquid between parallel plates in the 
presence of a transverse magnetic field is investigated. The form of the mean 
velocity profile is determined by a series of constraints resulting from the 
boundary conditions and the Navier-Stokes equations and by the Malkus postu- 
lates on the spectrum of the mean vorticity gradient. The width of the transition 
regions near the walls is derived in terms of the governing dimensionless numbers 
and this expression is checked, in the asymptotic laminar case, against the well- 
known Hartmann result. A graphical method, exploiting the relation between the 
boundary region thickness and the smallest scale of motion defined by the Malkus 
theory is proposed to determine the scale of the velocity profile, i.e. the flow rate 
in terms of the pressure gradient and the magnetic field strength. 

1. Introduction 
Few advances have been so far recorded by dimensional analysis in magneto- 

hydrodynamic turbulent channel flow. The existing theories (Hartmann & 
Lazarus 1937; Murgatroyd 1953; Harris 1960), besides being partly contra- 
dictory, are not entirely successful and, indeed, there are probably too many 
parameters necessary to describe the problem to infer a sensible relation between 
them without being forced to adopt additional and often dubious assumptions. 
Hartmann & Lazarus attempted to separate their results into a ‘turbulence- 
damping effect ’ typical of turbulent flows and a ‘viscosity effect ’ similar to that 
found in laminar flows. The procedure by which they effected this separation 
involved several delicate assumptions and, in particular, implied that the 
‘ turbulence-damping effect ’ is independent of the conductivity. Murgatroyd 
(1953) proposed instead a dimensional theory based on the hypothesis that the 
friction factor does not depend on the viscosity v. This hypothesis was severely 
criticized by Harris who pointed out that the friction factor, in laminar hydro- 
dynamic and hydromagnetic flows (between insulating walls) varies as v and V* 

respectively and is a function of In v in turbulent hydrodynamic flow. Assuming 
that, at points near the boundaries, the mean velocity profile is independent of 
the channel span and that, at points near the centre, the local structure of the 
mean flow is independent of the viscosity, Harris obtained the velocity profile in 
terms of two unknown functions. One of these, he claimed-independent of the 
viscosity-gave the distortion in the velocity profile caused by hydromagnetic 
effects, the other-independent of the channel span-represented over the 
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central part of the channel a constant addition to the mean velocity, For reasons 
difficult to understand, the latter was ultimately neglected in the expression of 
the friction factor and Harris added the requirement that this expression reduce 
to the known result of ordinary turbulence when the magnetic field strength is 
zero. The comparison with the experiments of Murgatroyd showed a satisfactory 
agreement only for moderate field strengths (the theory explains well the 
departure from purely hydrodynamic turbulence as a result of the application 
of a weak field) and, indeed, it is likely that in partly inhibited turbulence, at 
higher values of the applied magnetic field, the viscosity plays an important role. 

The limited success of the dimensional arguments suggest the resort to a totally 
different approach like the Malkus theory. Since its publication in 1954 and 1956, 
the Malkus theory of (ordinary) non-homogeneous turbulence has been much 
debated. It is based on a series of assumptions which are by no means indisput- 
able, but which lead to expressions of the mean temperature distribution in con- 
vective turbulence and of the mean velocity profile in shear turbulence in 
excellent agreement with the experimental observations. Later, Malkus reformu- 
lated his theory (Malkus 1961 a, b )  to emphasize the distinction between the 
fundamental assertions and the consequences of the mathematical formulation 
of the problem, and the complexity of the numerical analysis in which the basic 
assumptions were initially immersed. 

The following are the assumptions on which the theory is based (Malkus 1956) 
in the particular context of turbulent channel flow: 

1. There is no point of inflexion in the mean velocity profile. 
2. There is a smallest scale of motion which contributes to the transport of 

momentum. 
3. The smallest scale of motion is the smallest scale to which the mean profile 

is unstable on laminar theory. 
4. The total dissipation rate is greater for the actual flow than for any other 

flow with the same flux and satisfying the condition (1) and the boundary con- 
ditions on the walls. 

As pointed out by Townsend (1961), these assumptions fall into two categories. 
The first consists of the ‘kinematic assumptions ’ 1 and 3. In  addition to the more 
recent papers by Malkus, a very persuasive discussion of the arguments in their 
favour has been presented by Spiegel at  Marseille (1961) in the context of con- 
vective turbulence. They have been further discussed in the context of the 
problem of stability of MHD channel flow in a transverse field by Nihoul(l966). 

The ‘dynamical’ hypotheses of the second category are, on the other hand, 
much more difficult to understand. In  his original paper on shear turbulence, 
Malkus suggested that the maximization of the dissipation rate would leave less 
energy for disturbances of the mean and increase the stability of the mean 
velocity profile, and he invoked a series of thermodynamical arguments in sup- 
port. He later refined this approach and proposed that the stable solutions of 
turbulent shear flow were those of minimum dissipation for fixed momentum 
flux and those of maximum dissipation for fixed mean flow (Malkus 1961; 
Veronis 1961). In  shear flow in a channel, where the temperature is nearly the 
same everywhere, the mechanical dissipation is roughly equivalent to the 
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entropy production. Malkus’s principle has then some contact with the ideas of 
Glansdorff & Prigogine (1954, 1963, 1964)t and its dual aspect may imply that 
the stable statistically steady turbulent state is a saddle-point in the surface of 
entropy production; this saddle-point being a minimum with respect to varia- 
tions subject to fixed boundary fluxes and a maximum with respect to fluctua- 
tions resulting in variations ofthe boundary fluxes. The prospects of this meeting 
between the Malkus theory and familiar ideas of statistical mechanics are 
promising but, at the present stage, one must admit that a certain dubiety 
remains regarding the physical concept at the origin of Malkus’s variational 
principle. However, Townsend (1961) has pointed out that the form, though not 
the scale, of the velocity distribution was probably a consequence of the first two 
assumptions and he succeeded in obtaining the appropriate velocity profile by 
considering the best way of approximating to the asymptotic distribution with 
a finite series giving non-positive values for the mean vorticity gradient. 

In  the following, the Malkus theory is applied to MHD turbulent channel flow 
and it is shown that assumptions 1 and 2 are sufficient, in this case also, to 
determine the shape of the mean velocity profile. Assuming then that the 
magnetic field is sufficiently large to determine the width of the transition regions, 
through the modifications it produces in the boundary constraints, we derive the 
expression of the smallest scale in terms of the dimensionless numbers of the 
problem and, with arguments related to the third hypothesis, we deduce a relation 
between these dimensionless numbers. This corresponds to estimating say, the 
Reynolds number in terms of the others, i.e. determining the scale of the profile. 
These results are found to agree with those of Hartmann in the asymptotic 
laminar case and with the experimental measurements of Murgatroyd. 1 

2. The fundamental equation of MHD turbulent parallel flow 
We examine the flow of an incompressible conducting fluid between two 

parallel plates (at xg = +L).  The %,-axis is taken in the direction of the flow. 
A uniform magnetic field b, is applied perpendicular to the plates. We assume 
that the magnetic Reynolds number is small and neglect the induced magnetic 
field b as compared with b,. In  terms of the velocity v and the ‘local ’ Alphen 
velocity h = (,up)-*b, the basic equations may be written (see, for instance, 
Nihoul 1963) av 1 

- + V.VV + - Vp* = h,.Vh+ vV’V, 
at P 

(1) 

ho.Vv+hV2h = 0, 

V . V  = V.h = 0,  

t Malkus (1961) pointed out certain differences between his principle and Prigogine’s 
theorem in its original form but they are probably not irreconcilable, especially in view of 
the most recent work of Prigogine (1964). 

2 Since no use is made of assumption 4, there are a few numerical factors of order unity 
which cannot be better specified (although the asymptotic agreement with the laminar case 
gives much information). However, in view of the very little experimental data available 
(only the flow rate has been measured) it does not seem desirable to undertake the 
enormous numerical work which the application of the variational principle would require. 

1-2 
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where p* = p +pho. h is the ‘total’ pressure, p is the density, v the kinematic 
viscosity, h = (,ug)-l the magnetic viscosity, ,u the permeability and the con- 
ductivity. The term ah/at which might be expected in ( 2 )  is negligible provided 
the ohmic diffusion time scale is small compared with the fluctuating velocity 
time scale. 

Denoting ensemble averages by { ), let 

(v) = u(x2) = (u, 0 ,O) )  v = u +  w, 

(h) = a(x2) = (a, 0, O), h = a + c,  

( 5 )  

(6) 

( p )  = m*, p* = m*+r*. ( 7 )  

Substituting in (1) and ( 2 )  and averaging, we obtain 

du d2a 
h -+A- = 0. 

Odx, ax; 

Equations (9) and (10) may be integrated once, giving 

da 
hou + h - = - (p/3)-b,, 

ax2 
m* m* mo (w”+- = 0 = - 
P P P 7  

where e3 is the constant electric field in the x,-direction and where the subscript 
0 denotes the value a t  the wall. 

Defining for the convenience of later discussions (a bar refers to the average 
over x,) 

(13) 

7 = e3/Ub0, (14) 

7;5 = [ - ( ~ / p )  amo/dx,l* (friction velocity), 

and eliminating a and m between (8) ,  (9) and (lo), we obtain the fundamental 

d2U h2 hi- T d equation for u, 
v-----ou = ~-u--+-(W,w,). 
ax; h h L ax, 

3. Mathematical formulation of the Malkus theory 

The mean vorticity gradient being everywhere of the same sign, we may write 

d2u/dx; = - Ag2, (16) 

where A is a constant and g a real function. Following Malkus, we expand g in 
series of orthogonal functions q5n and truncate the series at the no th  term where 
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Each of the @,’s is characterized by a wave-number K ,  such that $A - K , $ ~ . ?  We 
now make the additional assumption that, away from the boundary (farther than 
one local wave-length), the leading term in (17) is of order K~ larger than all other 
terms, providing an asymptotic ‘law’ of order K~ larger than the rest (see equa- 
tion (41)). This requirement is equivalent to the condition that the coefficient Y, 
be smooth or equivalently that it be properly represented by a finite polynomial 
in K , / K ~  (Malkus 1961b). 

Symmetry and boundary constraints 
The velocity profile must be symmetrical with respect to the plane x2 = 0. (In 
the following we shall consider only the region 0 < x2 < L.) Since 

w1 = w2 = w3 = 0 and aw21ax2 = 0 

(from V . v = 0) a t  the boundary surfaces, 

We assume that the application of an electric and a magnetic field is not sufficient 
to reverse the flow. Hence, the velocity being zero at the boundary, the constant 
A in (16) must be positive. From this requirement, and from equations (18) and 
(15), it  follows that 

where Z = roL/Uv, M 2  = biL2/vh ( M  is the Hartmann number), and we may 
remove the arbitrariness in A by defining 

Z - q M 2  2 0,  (19) 

A = ( E / L 2 )  (Z-yM2).  (20) 

Combining (15) and (18) and introducing the non-dimensional co-ordinate 
y = x2 /L ,  we obtain the following boundary and symmetry constraints 

and 

t K, is not necessarily equal to n. It is equal to n in the case of circular functions but, in 
the case of Legendre polynomials, for instance, near the boundary, we have 

and thc characteristic wave number is the eigenvalue n(n + 1) N .nz for large n. The choice 
of one type of orthogonal function or another is determined by the boundary conditions 
and we shall see that circular functions are quite appropriate in the absence of a transverse 
magnetic field but that, in magnetoturbulence, circular functions would not permit the 
satisfaction of one of the boundary constraints and that Legendre polynomials are 
required. 
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For consistency of equations (19) and (22), 

z 4 (1+y)M2.  (25) 
Condition (25) imposes a lower bound on the (non-dimensional) shear stress as 
a function of the Hartmann number. The same inequality holds for laminar as 
well as turbulent flows. (The boundary constraints are the same.) It is readily 
seen (Hartmann 1937) that the laminar flow satisfies (25) with equality in the 
limit M+m. 

Determination of the function g 
In  the absence of a transverse magnetic field, (24) is replaced by (dg2/dy), = 0. 
Hence a convenient orthonormal set $n which automatically satisfies (23) and 

(24) is ?hn(@) = 2*cos 3n@ (7+bo = l),  

where @ = &r( 1 - y). This set is inappropriate in the magnetohydrodynamic case, 
since the terms of (17) cannot then individually satisfy the condition (24), which 
actually represents the main effect of the transverse magnetic field on the flow. 
As shown in the following, if the Hartmann number is large enough, the magnetic 
field determines the structure of the boundary layers through this condition. It 
is readily found that the Legendre polynomials of even order are the appropriate 
orthogonal functions which satisfy the condition of symmetry (23). This choice 
is guided by the boundary constraints. Hence if some result, later, appears as 
a property of the Legendre polynomials, we may be confident that it represents 
a genuine property of the flow. We therefore adopt the expansion 

$no 

9 = x Y,PZ,(Y). (26) 
0 

To satisfy the requirement of smoothness of the coefficient Y,,, we write it in the 
form of a finite polynomial. Let 

where 8 is any large integer less than no (Malkus 1961 b ) .  no is assumed very large 
and factors like no+ 1 are replaced by no. The factor (4% + 1) is found necessary 
in order to sum the series (26) (Malkus 1961b). Substituting (27) into (26) and 
performing these summations, we obtain g in terms of ultraspherical Jacobi 
polynomials C& (see the appendix). Since no is large, we may restrict attention 
to the first terms in their asymptotic expansions. Now it is a well-known property 
of asymptotic expansions that they may be different in different domains. In the 
present case, distinct asymptotic behaviour is found near the boundary where 
1 - y2 N O( I/@) and away from the boundary, in the core where 1 - y2 9 l/n,2. 

The function g in the core 
In  the core, setting y = cos 6,  we have (see the appendix) 

where 
S 

0 
cc = x u s ,  
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The function g in the transition region 

In  the transition region, setting y = 1 - 2C;ln& we obtain 

g b  n f J [ P J O ( 2 c ' )  +rJ2('P)1, 
where J denotes the Bessel function and where 

a* l S  a, S p = - r - -  
2 7 ' s f l '  = 5 ( s + l ) ( s + 2 ) '  

The first boundary constraint 

Equation (21) implies that 

[8.1" = 1. 

Substituting the expression of Y, given by equation (27) and writing 

we obtain the condition 
p = 0. 

(33) 

(35) 

Indeed, g being O( 1)  at the boundary, the term proportional to no must vanish 
at the boundary. Going back to equation (30), we see that this implies p = 0. 

J, and all higher-order Bessel functions being zero at  the wall, the next term 
in the asymptotic expansion of g (the term which is O( 1) in the series in powers 
of no and which has been omitted in (30)) becomes the leading term a t  the wall. 
However, J2(2c*) behaving like c near the origin, this term is important only 
over a range of 5 of order l/no, i.e. within a distance from the boundary of order 
1/n& Hence the effect of this term on the mean velocity profile in the transition 
region-and, a fortiori, in the core-is entirely negligible. Now the third 
boundary condition can be written 

In the derivative of g, the dominant contribution comes from the Bessel func- 
tions (there is a contribution N noJo  at the wall). Hence, if we use (36) instead 
of (24), we may completely disregard the next term in the expression of gb and 
write, in the transition region 

g b  nOyJZ(2c')* (371 

The second boundary constraint 

Combining (22), (28) and (37) gives 

trans. reg. 
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where nr2 < C < 1. In the range 0 < y < 1 - E, Ci, behaves like ni and the first 
integral may be neglected as compared with the second, which is readily trans- 
formed by a change of variable into 

tram. reg. 

where [ = O(1). Hence 

J O  

and I’2 = O(1) for ( = O(1). 

Near the wall 
The third boundary c o n s t r a i n t  

dsidy = dg/W - n ; / 4 ,  

In  deriving the formulae (37), (38) and (391, the implicit assumption was made 
that y is not zero. We now see that this corresponds to requiring that the 
Hartmann number be ‘sufficiently large’ (to account for the order of magnitude 
of the left-hand side of (40)). Now, the experiments of Murgatroyd (figure 1) 
suggest that between the laminar domain and the highly turbulent domain 
occurring for small values of MIR, there is a region-which we may agree to call 
the ‘inhibition region ’ (Nihoul 1966)-where the little sensitivity of the friction 
factor to the Reynolds number indicates very likely the prevailing influence 
of the magnetic field and we may thus expect that, by the third boundary con- 
straint, the magnetic field is the cogent factor in the determination of K,, and the 
boundary layer thickness. This suggests that we may perhaps take the lower 
limit of the inhibition region as an estimate of the minimum value of M / R  for the 
derivation leading to equation (40) to be valid. Restricting the analysis to the 
inhibition region, we may substitute (38) into (40). We obtain 

As expected, this formula determines K~ in terms of the dimensionless numbers 
of the problem within a factor of order 1. 

Let us go back to equation (17) and the fundamental assumption that g may 
be adequately represented by a truncated polynomial expansion. In  the case of 
a flat velocity profile with narrow regions of transition near the boundaries-and 
the fact that we do get such a profile constitutes a test of consistency of one 
essential postulate of Malkus’s theory-the vorticity gradient is significant only 
over the boundary regions. Since the width of these regions is O ( L / K o ) ,  all ortho- 
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gonal functions corresponding to wave-numbers larger than K~ oscillate many 
times over the regions where g is important and this implies that, in an infinite 
series, their coefficients (which are given by an integral of glc.,) would be very 
small. Hence, we may be confident that the truncated expansion (17) is an 
adequate description and that the effect of a ‘tail’ beyond K ~ ,  if taken into 
account (by a perturbation method, for instance) would modify very little the 
conclusions above. (This is discussed in more detail in Nihoul 1966.) 

The condition of ‘normalization ’ 
Let u = u jU and y = x2/L. Equation (16) may be written, with the help of (20) 

d2vldy2 = - [Z - ?j4P] 92. (42) 

Hence, since duldy = 0 at y = 0 and u = 0 at  y = k 1,  

and 

Integrating by parts and averaging over y, we get 

1 

-1 
4 = [ Z - v M 2 ] j  (1-y2)g2dy. 

(44) 

(45) 

We divide the integral into an integral over the core and an integral over the 
transition regions. If 1 / ~ ~  < Z < 1,  we have, from (28) and (37) 

In  the first integral, we may extend the range of integration from - 1 to 1. We 
make an error less than l/no. Indeed the maximum values of the Jacobi poly- 
nomials occur at the wall and it may be shown (Tricomi 1955) that 

Ic;,(y)I < Ic!,,(l)l = +(no+2) (no+ 1 )  N at. 

In  the transition regions, we have 

- y2) dyl G o(n,,4). 

Hence, since C:, behaves like n$ in the core, 

Now the Jacobi polynomials satisfy (Tricomi 1955) 

7@-2hF(m+ 2h)- 
- m! (m + A )  [F(A) ]~ ’  (1  - y2)*-$ C& CA * dl - 

Substituting in (46), we obtain 

(47) 

(48) 
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Combining (48) and (38), we have finally 

a2 
- (2 - 7 M 2 )  = 4[l- (A2/n$)  (2 - (1 + 7) “71,  
120 

i.e. (50) 

where u8 denotes the value of the dimensionless velocity u = u/U at the limit of 
the transition region 

as shown below. 

(a2/no) (2 - qM2) = 41 1 - u8), 

u8 = (A2/%:) [Z - (1 + 7) M2] ,  

Velocity projile in the transition region 
From (44), 

i.e. 

The velocity increases monotonically from 5 = 0 to its maximum value u8 at the 
upper limit of the transition region. 

Velocity defect law in the core 

Substituting (50) in (28), we have, from (44), 

t 54) 

At large values of no, the Jacobi polynomials may be replaced by their asymptotic 
expansions. Hence 

3)eae 4 in 1 + sin (2n0 + 
u,,, - u - - (1 - u8) sin 0 do/  -sin2B-- 

7l e B 

4 
(55 )  - - (1 - u8) (1 - sin 0). 

?T 

This expression is consistent with the fact that, if the profle is very flat, on 
one hand, the difference between u and urnax must be very small over the whole 
core, while on the other hand, the velocity a t  the upper limit of the transition 
layer is very nearly equal to the mean velocity, i.e. u8 N 1. 

Width of the transition layer 
Within a factor of order unity, 
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Here we reach a point where we can test our theory. For when the Hartmann 
number is sufficiently large, the flow becomes laminar. The width of the transition 
region, in the limiting case, must still be given by equation (41). Substituting 
(Hartmann 1937) 2 = (1 + 7) M 2  + M ,  we get 

8, N M-1, (57) 

in agreement with the well-known Hartmann result. This is some evidence in 
favour of the present analysis. 

4. The scale of the mean velocity profile 

obtained by superposing a series of components of the form 
Let a slight perturbation occur in some part of the flow; i t  is a wave packet 

eia(s-4 @(y). (58) 

The largest value of the derivative of @ will occur in the sharp shear zone at the 
boundary and this will determine the smallest scale of motion (Malkus 1956). 
Restricting attention to the first term in the asymptotic expansion of @ in the 
complex y-plane, we have (Wasow 1948) 

K~ N (2ctCRc)*, (59) 

where R is the Reynolds number. Now a,, the down-stream wave number, bears 
some (probably fixed) relation to K ~ ,  the cross-stream wave number, say 

= ra,. 

From ( 5 2 ) ,  C = K o 1 [ 2  - (1 f 7) M2]  b, 

where 

Hence, K$ N 2r-lE[Z - (1 + 7) M 2 ]  R. (62) 

R, = SUJV, (63) 

Following Malkus, we now define a ‘boundary Reynolds number ’ 

where s is a distance proportional to K ; ~ ,  say s = K ; ~ ,  and us is the velocity that 
would be due to the initial gradient at  that distance from the boundary. So 
defined, equation (63) may be written 

from (22) and (43). 
Combining (41) and (62), weobtaintherequiredrelation betweenthe dimension- 

less numbers R, 2 and M .  This relation, however, still contains unspecified 
parameters T ,  b, which must be determined by solving the eigenvalue problem 
of the Orr-Sommerfeld equation, expressing the condition of marginal stability 
(Imc = 0) and the requirement of maximum dissipation rate (or minimum 
Reynolds number for constant dissipation rate, Malkus 1956). To avoid this 
mathematically complex variational problem we shall give here a different 
approach making use of the stability requirements on the smallest scale in a more 

R, = R[2 - (1 + q )  M 2 ] / ~ i  (64) 
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intuitive form and of dimensional arguments predicting the variation of the 
boundary Reynolds number. 

For simplicity, we shall, from now on, restrict attention to the case 7 = - 1 
(which is the situation considered by Hartmann, Murgatroyd, Lock and Harris). 
In equation (64), K~ and one of the dimensionless numbers (2, say) are (so far 
unknown) functions of the other two dimensionless numbers. The boundary 
Reynolds number will thus turn out finally as a function of M and R and we may 
speculate that it will actually be a function of the sole combination MIR as it 
probably does not depend on the channel span. So let 

We expect that the function q will be O ( M / R )  for small M and will approach unity 
fairly rapidly as the Hartmann number increases. From (41), (64) and (65), we 
have, in the case 7 = - 1,  

ZqM2 + 21% = q(M/R)  M t .  (66) 

At sufficiently large Hartmann number, we expect q M 1, and equation (66) 
provides a first estimate of the flow rate in terms of the shear stress and magnetic 
field strength. We observe that, if M2/Z  1, as is the case in the inhibition 
region, (66) givesZ/Ras a function of M / R  only, in accordance with the main conclu- 
sion drawn by Murgatroyd from his experiments.? We shall now try to improve this 
estimate and we shall, for this, rely on the results obtained by Lock. Our approach 
is, in a way, the graphic equivalent of the numerical method of Malkus. 

One of the main conclusions reached by Lock (1956) is that, given a neutral 
stability curve a(R) corresponding to a flat-topped profile with narrow boundary 
layers, the effect of reducing the width of these layers by superimposing an 
appropriate transverse field (on the one which pre-existed) is merely a translation 
of the a(R)  curve or, in other words, a change of units along the ct and R axes, the 
new units being proportional to M, s1 M and s2 M, say, respectively. If the reduc- 
tion of the boundary layer thickness is produced by superimposed turbulence, we 
may speculate that the neutral stability curve will undergo the same sort of 
translation but its amount and direction will presumably be set by the Reynolds 
number and the new units along the axes will probably be proportional to R, s; R 
and sLR, say (Nihoul 1966). This will happen to the neutral stability curve 
corresponding to any value of M and thus-as a result of the appearance of 
turbulence producing a further flattening of the velocity profile-we foresee that 
the curve a,(M) will itself be translated, the amount and the direction of the 
translation being set by the value of the Reynolds number. This suggests that 
the curve ct,(M) drawn by Lock is actually universal if appropriate units s'; R, si R 
are used along the axes. Since ra, = K ~ ,  this curve may also be regarded as 
a representation of K o / R  as a function of MIR. (We assume that r is constant, at 
least over the inhibition region and we absorb it in the scaling factor.) On this 
diagram, the linear part will presumably correspond to laminar flows (we know 

In his paper, Murgatroyd suggested that this observation could support his dimen- 
sional law according to which ZIR was a function of MIRnf only, as all his experiments 
were carried out a t  constant value of n (n = v/A). 
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that in the laminar case K~ N M ) .  If we impose the condition that the transition 
between turbulent and laminar regimes occurs a t  the value of MIR observed by 
Murgatroyd, we have sufficient information to determine the scaling factors on 
the axes. It is not necessary to do it explicitly. If we graduate the x-axis in 
MIR such that the transition to the laminar law occurs at the value reported 
by Murgatroyd, the ratio of the ordinate of the curve a., and the ordinate of its 
‘asymptote’ gives Ko/M for all values of MIR. Hence, we have a graphic method 
of determining the smallest scale of motion and this dispenses with the 
necessity of determining it by heavy numerical calculations. 

0 
10 20 30 40 50 60 

lo4 (MIR) 

FIGURE 1. Friction factor (C, = 2Z/R)  versus MIR. Experimental points 
(Murgatroyd 1953) 0, R = 3 x lo4; v, R = 2.5 x lo4; x , R = 2 x lo4. 

For each value of K ~ / M  measured on the diagram, we may, by equation (41) 
calculate R for given P and M (i.e. the flow rate as a function of the shear stress 
and the magnetic field strength). To allow the comparison with the experiments 
of Murgatroyd, we have calculated the friction factor (C’ = 2Z/R)  for different 
values of M / R  and R and we have found an excellent agreement between the 
calculated values and the measurements (figure 1). 

Clearly, the graphic method described here allows for a certain margin of 
quantitive error in the scaling identification and especially in the location of the 
transition point between turbulent and laminar flow on Lock’s diagram (which 
is made particularly difficult by the smoothness of contact between the two 
curves). If this point of transition is adroitly located, however, the calculated 
curve agrees very well with the results of Murgatroyd and actually coincides over 
the inhibition region-within, say, the precision of the slide-rule which is the best 
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we may hope for in view of the difficulties inherent to this semi-graphic method- 
with the curve tentatively drawn by Murgatroyd to connect his experimental 
points. The calculated curve diverges from these points upwards roughly where 
they cease to be on a single curve but we could not expect that any of our specula- 
tions would be very accurate at these rather low values of the Hartmann number 
and, in particular, the formula (41 ) ,  as discussed above, presumably loses all 
significance as soon as the magnetic field ceases to be prevailing. (This, we believe, 
is roughly indicated by the greater sensitivity to the Reynolds number which 
appears for 104BI/R < 20 (see figure 1 and also Nihoul 1966.) Approximately for 
the same value of M / R ,  the calculated points also fall into different curves (for 
different values of R) as 2 is a function of MIR only-as pointed out before- 
provided M2/R $ 1 (dashed curves in figure 1 ) .  

Appendix 
Substituting (27) into (26), we get 

The Legendre polynomials satisfy the relations (Tricomi 1955) 

(4n+ 1 ) G n  = Gn+1-%-1 

and 

Hence A ,  = P&+, = Ci0 and A ,  = [(y2- 1)AL-J'. 

( 1  - y2)PL, - ZyP;, + 2n(2n + 1 )  P2, = 0.  

Substituting for A,-,, A,-2 and so on, the following recurrence formula is found 

m m --p 

0 P + l  
A ,  = x ( -  (2p+ I ) !  C!ZP C n (no+ 2 ) .  (no+ 3 ) ;  (no+ 2p + 2 ) .  (no+ 223 + 31, 

m-p 
where X (no + 2 )  . (no + 3 ) ;  (no + 2p + 2 )  . (no + 2p + 3 )  denotes the sum of 

P+ 1 
all products of degree m - p  that one can form with p + 1 factors of the type 
(n,+2r+2)(no+2r+3).  There are m ! / ( m - p ) ! p !  of them. 

The function g in the core 

In the core setting y = cos 8, we have 

Hence 
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For large no the dominant contribution comes from the term p = 0. Hence 

The function g in the transition regions 

In  the transition regions, setting c/no = (212, - p  + 2) (1 - y)/(3 + y) we have 
(Tricomi 1955) 

where 0 is the limit of the hypergeometric function 

N (A - i) ! J,-g(2@) for large no, 

where J is the Bessel function. Hence 

It may be shown that the Bessel functions satisfy 

J&2&p P! Jzp+2--2q + JZP-29 

@P+l) 5 q! ( p  - q ) !  (2p + 1 - a ) .  . . (p+ 1 - q)  

Hence 
( P + l ) !  

( p - T + l ) ! ( p + r + l ) !  

m 

JO Jz 

with a, 1 s  aK S 

P=i?-- 0 K + 1 '  y = r - -  $ ( K +  1) (K+2)' 

We restrict ourselves to the first two Bessel functions in this context, taking into 
account that J21.(2@) 4 JZ(2@) for r > 1 and < N 1. 

The author wishes to express his sincere thanks to Dr H. K. Moffatt for his 
valuable advice and encouragement during the course of this study. He would 
like to record his indebtedness to Prof. W. V. R. Malkus for communicating to 
him his unpublished work on Relative Stability and for his profitable remarks 
on this research. 
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